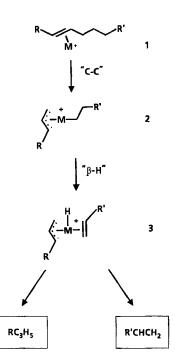
Metal Ions Control the Competition between β - and γ -Hydrogen Transfer in the Generation of Propene from 1,7-Octadiene in the Gas Phase

Oliver Dange, Norbert Steinrück, Detlef Stöckigt, and Helmut Schwarz*

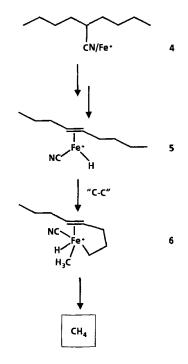
Institut für Organische Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12, F.R.G.


Received February 9, 1990

Key Words: Transition-metal ions / Bond activation, CH and CC / Olefine activation / Tandem mass spectrometry

The mechanistic details (i.e. β - versus γ -hydrogen transfer) of transition-metal ion induced generation of propene from metastable ion complexes of 1,7-octadiene with $M^+ = Cr^+$, Fe⁺, Ni⁺ are strongly affected by the nature of M^+ . For Cr⁺ the major reaction involves the transfer of an allylically activated hydrogen atom to M^+ (γ -H transfer), followed by coupling of

There exists ample experimental evidence for the highly regioselective reactions of bare transition-metal ions M^+ with olefins. The reaction commences with the complexation of the π -bond by the metal ions, followed by oxidative addition of the allylic C-Cbond to M^+ (Scheme 1: $1\rightarrow 2$); the insertion is completed by β hydrogen transfer to produce a complex 3, which eventually undergoes reductive elimination of RC₃H₅ or ligand detachment (loss of RCH=CH₂), as originally proposed by Beauchamp et al.¹⁾ and later confirmed by Ridge, Gross, and co-workers²⁾. The specificity of the overall reaction (Scheme 1) is such that, by detachment of the less strongly bound ligand, an unambiguous location of the double bond can be achieved.


Scheme 1

this hydrogen with the C_3H_5 unit (Scheme 3: $8 \rightarrow 9 \rightarrow 11 \rightarrow C_3H_6$). The hydrogen transfer $9 \rightarrow 11$ is preceded by substantial exchange reactions. A minor path for $M^+ = Cr^+$ corresponds to the more traditional β -hydrogen transfer $9 \rightarrow 10$. This process, however, represents the major route for propene loss induced by $M^+ = Fe^+$, Ni⁺.

vation of alkenes. For example, detailed studies³⁾ of Fc⁺ complexes of α -branched aliphatic nitriles, e.g. **4**, have revealed for the gasphase generation of CH₄ an unprecedented reaction mechanism, which involved the following steps: (i) insertion of Fe⁺ into the C-CN bond and β -hydrogen transfer (Scheme 2: **4** \rightarrow **5**), (ii) oxidation of a *remote*⁴⁾ H₃C-C bond, **5** \rightarrow **6**, and (iii) reductive elimination of CH₄. In fact, there is increasing evidence⁵⁾ that cooperative effects, exerted by the presence of several functional groups and orchestred by a transition-metal ion, cause highly selective reactions which are often unknown for the monofunctional systems.

However, as indicated in Scheme 2, allylic activation needs not necessarily be the dominant mode of C-C or C-H bond acti-

In this paper we report on the metal-ion $(M^+ = Cr^+, Fe^+, Ni^+)$ mediated formation of propene from 1,7-octadiene (7) in the gas phase⁶⁾. If the traditional concept, which is operative for simple

Chem. Ber. 123 (1990) 1583-1585 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1990 0009-2940/90/0707-1583 \$ 03.50+25/0

alkenes, applies also to the loss of propene from metastable ion ⁷) complexes 8, the neutral is predicted to originate from C-1-C-2-C-3 and one hydrogen atom which is provided by C-5 (Scheme 3: $9 \rightarrow 10$). Alternatively, the C-C double bond of the C₅ ligand may activate its allylic C-H bond such that a hydrogen atom from this position is transferred to the metal ion $(9 \rightarrow 11)$, followed by re-

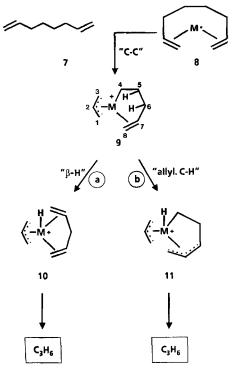
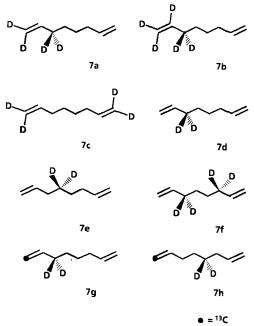


Table 1. Labeling distribution for the M^+ ($M^+ = Fe^+$, Ni^+ , Cr^+) mediated formation of propene from 1,7-octadiene isotopomers


	<u>Δ</u> m						
Precursor	M+	42	43	44	45	46	47
7 a -M ⁺	Cr+ Fe+ Ni+	12 38 33	24 11 15	9 11 18	14 8 14	41 32 20	
$7 b$ -M $^+$	Cr ⁺ Fe ⁺ Ni ⁺	4 33 26	30 7 13	17 12 17	10 12 16	21 8 10	18 28 18
7c-M+	Cr ⁺ Fe ⁺ Ni ⁺	2 3	11 12 16	80 82 71	9 4 10		
7 d -M+	Cr+ Fe+ Ni+	15 45 45	30 24 30	55 31 25			
7e- M+	Cr+ Fe+ Ni+	69 56 62	26 37 30	5 7 8			
7 f- M ⁺	Cr ⁺ Fe ⁺ Ni ⁺	$\frac{2}{3}$	11 18	36 83 70	64 4 9		
7 g-M +	Cr ⁺ Fe ⁺ Ni ⁺	18 40 35	18 11 23	11 13 19	53 36 23		
7 h- M+	Cr+ Fe+ Ni+	55 46 49	25 22 21	20 28 27	4 3		

^{a)} Intensities are normalized to $\Sigma \Delta m = 100\%$ for a given complex.

ductive elimination of C_3H_6 . The latter reaction would correspond to a γ -hydrogen transfer which is much less prevalent in organometallic systems compared with β -hydrogen transfer.

While a structural characterization of the species generated in the course of C_3H_6 formation from 8 is not yet feasible, the study of the set of D- and ¹³C-labeled 1,7-octadienes 7a - 7h (Scheme 4) reveals some unexpected findings. Most notable is the observation that the Fe⁺ and Ni⁺ complexes give an isotope distribution (Table 1) which is quite different from that observed for the Cr⁺ complexes; in addition, an analysis of the labeled substrates clearly indicated that extensive rearrangements precede the formation of C₃H₆.

Scheme 4

Let us first discuss the Cr^+ -induced formation of C_3H_6 from 7. From the analysis of the data of 7a, e, h, f it follows that path (b) accounts for $\geq 60\%$. Due to unknown isotope effects a more quantitative estimate is not possible. Path (a), the prototypical mechanism for alkene loss, contributes roughly to 25-30% of the total propene formation. Interestingly, path (b) is subject to reversible hydrogen exchange preceding the detachment of propene. This is indicated by, for example, the loss of $\Delta m = 44 (11\%)$ from 7g-Cr⁺. If paths (a) and (b) were operative without prior hydrogen exchange one should only observe signals corresponding to $\Delta m =$ 42, 43, and 45, respectively. Similarly, losses of $\Delta m = 44$, 45 in the spectrum of 7a-Cr⁺ and of $\Delta m = 43, 45$ from 7c-Cr⁺ can only be accounted for by hydrogen exchange reactions. There exist at least two mechanistic variants which, however, cannot yet be distinguished: (i) Process $9 \rightarrow 11$ is reversible and may involve a doublebond shift from the terminal to an internal position. (ii) The C-Cbond cleavage $8 \rightarrow 9$ is preceded by a reversible isomerization, e.g. 1,7-octadiene \rightleftharpoons 1,6-octadiene \rightleftharpoons 2,6-octadiene. An even more complex variant may involve the reversible isomerization 1,7-octadiene \rightleftharpoons cyclooctene⁸⁾. Interestingly, for path (a) exchange processes due to a reversibility of the reaction $9 \rightarrow 10$ are much less pronounced. This follows directly from the low intensity (5%) signal corresponding to $\Delta m = 44$ in the spectrum of 7e-Ce⁺.

In view of the results of a recent study⁹⁾ on the specific Fe⁺induced loss of ethylene from the *internal*, *intact* CH₂ groups C-4/ C-5 of 7, we are quite surprised to note from the data listed in Table 1 that propene elimination from 7-Fe⁺ is much less specific. Surprisingly, the reactions with Fe⁺ are even much less specific than those with Cr⁺ which is in distinct contrast to the ethylene generation from 7-M⁺ for which the opposite holds true⁹. Similarly, the Ni⁺ complex of 7 is prone to undergo extensive rearrangements prior to propene loss and, as already described⁹⁾, also to ethylene elimination.

Although no quantitative analysis of the data given in Table 1 is yet possible, we note from the spectra of 7a, b, d, f that Fe⁺ and Ni⁺ clearly favour path (a) over (b) which is in distinct contrast to Cr⁺.

Financial support of our work by the Volkswagen-Stiftung, the Deutsche Forschungsgemeinschaft, the Gesellschaft von Freunden der Technischen Universität Berlin, and the Fonds der Chemischen Industrie is gratefully acknowledged.

CAS Registry Numbers

 $Cr^{\oplus}:$ 14067-03-9 / Fe^{\oplus}: 14067-02-8 / Ni^{\oplus}: 14903-34-5 / 1,7-octadiene: 3710-30-3

 ²⁾ ^{2a)} B. S. Larsen, D. P. Ridge, J. Am. Chem. Soc. 106 (1984) 1912. - ^{2b)} D. A. Peake, M. L. Gross, D. P. Ridge, J. Am. Chem. Soc. 106 (1984) 4307. - ^{2c)} D. A. Peake, M. L. Gross, Anal. Chem. 57 (1985) 115.

- ³⁾ G. Czekay, T. Drewello, K. Eller, W. Zummack, H. Schwarz, Organometallics 8 (1989) 2439.
- ⁴⁾ For reviews and leading references on the concept of "remote C-H/C-C bond activation by "bare" transition-metal ions in
- C-H/C-C bond activation by "bare" transition-metal ions in the gas phase", see: ^{4a)} H. Schwarz, Acc. Chem. Res. 22 (1989) 282. ^{4b)} K. Eller, H. Schwarz, Chimia 43 (1989) 371.
 ⁵⁾ See, for example: ^{5a)} S. K. Huang, J. Allison, Organometallics 2 (1983) 883. ^{5b)} M. Lombarski, J. Allison, Int. J. Mass Spectrom. Ion Phys. 49 (1983) 281. ^{5c)} A. Tsarbopoulos, J. Allison, J. Am. Chem. Soc. 107 (1985) 5085. ^{5e)} T. Prüsse, T. Drewello, C. B. Lebrilla, H. Schwarz, J. Am. Chem. Soc. 111 (1989) 2857). ^{5f)} A. Hässelbarth, T. Prüsse, H. Schwarz, Chem. Ber. 123 (1990) 200 ⁵⁸⁾ T. Prüsse, G. Czekay H. Schwarz, Chem. Ber., in the 209. - ^{5g)} T. Prüsse, G. Czekay, H. Schwarz, Chem. Ber., in the
- press.
 O. Dange, Diplomarbeit, Technische Universität Berlin, 1989.
- ⁷⁾ The complexes 8 were generated by electron-impact ionization (100 eV) of a 10:1 mixture of 7 and a transition-metal-containing precursor suitable to generate M^+ [e.g. Fe(CO)₅, Ni(acac)₂, or Cr(acac)₃, respectively] in the ion source of a modified ZAB mass spectrometer having $\vec{B}EBE$ configuration (B stands for magnetic and E for electrostatic sector). Complexes 8 were accelerated to 8 keV kinetic energy and mass-selected by B(1)E(1); unimolecular dissociations occurring in the field-free region between E(1)and B(2) were recorded by scanning B(2). All three metal ions Fe⁺, Ni⁺, and Cr⁺ give rise to abundant signals due to the loss of C_3H_6 , which presumably corresponds to propene, from 8: 50% total fragment ions for 7-Fe⁺, 69% for 7-Ni⁺, and 15% for 7-Cr+
- ⁸⁾ Fe⁺-mediated ring opening of cyclooctene \rightarrow 1,7-octadiene was suggested (but not unambiguously proven) by: D. A. Peake, M. L. Grosz, Organometallics 5 (1986) 1236.
- ⁹⁾ N. Steinrück, O. Dange, D. Stöckigt, H. Schwarz, Angew. Chem. 102 (1990) 429; Angew. Chem. Int. Ed. Engl. 29 (1990) 402.

[57/90]

¹⁾ P. B. Armentrout, L. F. Halle, J. L. Beauchamp, J. Am. Chem.